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I. Introduction

—KMeans is an algorithm used in Data Mining to find
k clusters (group of data) for the data set used for the
algorithm. It use the number of cluster that the user
want, k, to initialize k centroids (actually the means of
the clusters), and move them to divide the data points
into k groups and partition the data set. Our idea was
to improve this algorithm and allow the user to enter
a range [kmin, kmax] for the number of clusters (k) of
the KMeans algorithm. Our method will then apply
the algorithm of KMeans for each k ∈ [kmin, kmax] and
finds which one is the more likely to be optimal. But
how can we determine this ”more likely to be optimal”
k ?

The idea is to use the Elbow Method, which is a
method used to find the more likely optimal number of
clusters k for a data set. We determine the percentage
of variance explained (which correspond to the vari-
ance between the clusters against the variance of each
data point between the Grand Mean of the data set)
for each application of KMeans in [kmin, kmax], and
we try to find the k value for which the percentage
of variance explained is good enough, and for which
the increment of number of cluster doesn’t really have
a better percentage of variance. Basically, we try to
find the k where the next gain of percentage value ex-
plained will drop and form an ”elbow” in a graphic
representation.

To calculate this percentage of variance explained,
we use the F-Test ratio :

F (x) =
BSS(x)

TSS

The BSS is the Beetween-Group Variability, defined
by :

BSS(x) =

x∑
i

|Ci|(m−mi)
2

with x the number of clusters, |Ci| the number of
elements in the cluster Ci, mi the centroid of the clus-
ter Ci and m the Grand Mean (the mean of all the

data points, defined by :

m =
∑

y∈∪Ci

y

N

with N the number of data points in the data set, and
y a data points). The TSS, the Total Variation, is
defined by :

TSS =
∑

y∈∪Ci

(m− y)2

with y a data point, Ci a cluster and m the Grand
Mean. For a same data set, it’s a constant, regardless
of the number of clusters. Actually, the TSS actually
correspond to the Beetween-Group Variability plus the
Within-Group Variability (WSS, defined by

WSS(x) =

x∑
i

∑
y∪Ci

(mi − y)

with x the number of clusters, Ci a cluster, y a data
point and mi the centroid of the cluster Ci). When we
increase the number x of clusters, the WSS tends to 0
and the BSS tends to the TSS. This is absolutly log-
ical, because when x = N (with x the number of clus-
ters and N the number of data points), the percentage
of variance explained is obviously 100% because

lim
x→N

F (x) =
BSS

BSS
= 1

Conversely, when we decrease the number x of clus-
ters, the BSS tends to 0 and the WSS tends to the
TSS. It’s also logical, because if there is only one
cluster, there cannot be a Between-Group Variability.

To use the Elbow method and determine the ”el-
bow”, two equivalent techniques have been imple-
mented: the first one compare the second order deriva-
tive of the F-Test for each k ∈ [kmin, kmax], and
the second one compare the measurements of the an-
gles formed by the vectors generated by two points
(x, F (x)) in a graphic representation of the percentage
of variance explained, with x the number of cluster
and F (x) the F-Test of the KMeans algorithm for x
number of clusters.
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II. Second Order Derivative

—The idea here is to use the second order derivative
to compare the percentage of variance explained for
each KMeans algorithm applied to a number x of clus-
ters. We want to find were the difference between two
consecutive second order derivative is maximum, be-
cause that’s where the x number of clusters could be
the more likely to be optimal k.

fig.1 : Representation of Elbow Method with
distances

Here, we have to compare the variances of the dif-
ferent k.

fig.2 : Comparison of the distances

Let’s use the function F for the F-Test defined by

F (x) = BSS(x)
TSS , with x the number of clusters for the

KMeans algorithm. We can see in the fig.2 that there
is an important drop for k = 4, which correspond to
the ”elbow” in the fig.1. Actually, this is where the
difference between F (x)−F (x−1) and F (x+1)−F (x)
is maximum. Let’s name this function ψ.

ψ(x) = (F (x)− F (x− 1))− (F (x+ 1)− F (x))

ψ(x) = F (x)− F (x− 1)− F (x+ 1) + F (x)

ψ(x) = 2F (x)− F (x− 1)− F (x+ 1)

We have defined a function named ψ.

ψ(x) = 2F (x)− F (x− 1)− F (x+ 1)

with x the number of cluster, and F (x) the F-Test
applied to the KMeans algorithm for x clusters. We
apply this ψ function to all the x ∈ [kmin+1, kmax−1]
(the bounds are excluded because the elbow cannot be
one of the bounds, but we can apply this algorithm for
[kmin−1, kmax+1] to include the bounds that the user
chose). The y ∈ [kmin + 1, kmax − 1] for which ψ(y) is
the maximum value of ψ will be the more likely to be
optimal number of clusters k for the data set.

We can test this algorithm in our example of the
fig.1, with the points k2(2, 40), k3(3, 60), k4(4, 80),
k5(5, 82), k6(6, 85), k7(7, 87), k8(8, 90).

We have :

F (2) = 40;
F(3) = 60;
F(4) = 80;
F(5) = 82;
F(6) = 85;
F(7) = 87;
F(7) = 90

So :

ψ(3) = 2 ∗ 60− 40− 80 = 0;
ψ(4) = 2 ∗ 80− 60− 82 = 18;
ψ(5) = 2 ∗ 82− 80− 85 = −1;
ψ(6) = 2 ∗ 85− 82− 87 = 1;
ψ(7) = 2 ∗ 87− 85− 90 = −1;

We find that ψ(4) = 18 is the maximum value of ψ
for [2, 8]. So k = 4 is the optimal number of clusters.

III. Angle Comparison

—The idea here is to use a theoretical comparison be-
tween the angles formed by the vectors generated by
two consecutive points (x;F (x)) and (x+ 1;F (x+ 1))
in the graphic representation of the Elbow method.
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fig.3 : Representation of Elbow Method with vectors

We can see that the ”elbow” is in fact the smaller
angle formed by the vectors of the graph (here θ4).
We will name −→ux the vector generated by the points
of abscissa x and x + 1. To find the measuring of an
angle with x at its top, we have to use the vectors −→ux
and −−−→ux−1. The −→ui vectors have for first coordinate 1
(they are vectors generated by the point (x;F (x)) and
the point (x+1;F (x+1))). Their second coordinate is
the difference between F (x+ 1) and F (x). Let’s name
this function ∆. So the coordinates of −→ux are (1;∆(x)).

The mathematical formula to calculate the mea-
suring of an angle between two vectors −→v (v1; v2) and
−→w (w1;w2) is :

arccos(
< v;w >

||u|| ∗ ||w||
)

which is equal here to :

arccos(
v1w1 + v2w2√

(v1)2 + (v2)2 ∗
√

(w1)2 + (w2)2
)

We just have to apply this formula to our vectors
−→ux(1; ∆(x)) and −−−→ux−1(−1;−∆(x− 1)). That give us
:

arccos(
−1−∆(x− 1) ∗∆(x)√

1 + (∆(x− 1))2 ∗
√

1 + (∆(x))2
)

Let’s name this function φ.

φ(x) = arccos( −1−∆(x−1)∗∆(x)√
1+(∆(x−1))2∗

√
1+(∆(x))2

)

with x the number of cluster. We apply this φ
function to all the x ∈ [kmin + 1, kmax − 1] (the
bounds are excluded because the elbow cannot be one
of the bounds, but we can apply this algorithm for
[kmin − 1, kmax + 1] to include the bounds that the
user chose). The y ∈ [kmin + 1, kmax − 1] for which
φ(y) is the minimal value of φ will be the more likely
to be optimal number of clusters k for the data set.

We can test this algorithm in our example of the
fig.3, with the points k2(2, 40), k3(3, 60), k4(4, 80),
k5(5, 82), k6(6, 85), k7(7, 87), k8(8, 90).

We have :

∆(2) = 20;
∆(3) = 20;
∆(4) = 2;
∆(5) = 3;
∆(6) = 2;
∆(7) = 3

So :

φ(3) = 180;
φ(4) = 156.6;
φ(5) = 171.9;
φ(6) = 171.9;
φ(7) = 171.9;

We find that φ(4) = 156.6 is the minimal value of
φ for [2; 8]. So k = 4 is the optimal number of clusters.
We can see that visually in the fig.3, the ”elbow” is
for k = 4 too.

VI. Conclusion

—We found those two method to determine the
”elbow” in the gain of percentage of variance ex-
plained. But the F function have to be mono-
tonic, and more specifically a non-decreasing func-
tion. Actually, we need to find if F (x + 1) ≥ F (x),
∀x ∈ [kmin, kmax]. We can reduce this inequality to

BSS(x + 1) ≥ BSS(x), because F (x) = BSS(x)
TSS , and

TSS is constant ∀x ∈ [kmin, kmax].

Like we said in the introduction, when we decrease
the number of clusters, the BSS tends to 0, and
when we increase the number of clusters, the BSS
grows and tends to the TSS. So we can say that BSS
is a non-decreasing monotonic function. So we have
BSS(x+1) ≥ BSS(x), which implies F (x+1) ≥ F (x),
∀x ∈ [kmin, kmax]. So we can say that F is a non-
decreasing monotonic function.

In theory, our methods find the ”elbow” in the
gain of the percentage of variance explained, finding
the maximum of second order derivative or the mini-
mal angle. But what if there is no maximum of second
order derivative or minimal angle ? Imagine that the
gain between to consecutive percentage of variance
explained is strictly equal; how can our methods be
effective ?
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fig.4 : Representation of Elbow Method , case where
the gain is always equal

We can deal with this situation by adding this case:
∀x ∈ [kmin + 1, kmax − 1], if all the ψ(x) (or φ(x)) are
equal, we take the first iteration (in fact kmin + 1) as
the more likely to be optimal k. Finding k clusters for
a data set may require a lot of calculus; so less we have
clusters, more efficient and shorter could be our algo-
rithm. That’s why we use the first iteration (kmin+1).

We can also ask ourselves if it is useful to use the
”elbow” that we found if the drop of gain is really neg-
ligible, i.e we can’t really detect it visually ? In other
terms, is it worth it to use the more likely to be opti-
mal number of clusters y if there actually is an other
number of clusters y′ < y whose percentage of variance
explained is not so different ? As previously said, y′

would be more efficient because it requests less calcu-
lation, for a result quite similar. It can really help us
to make our algorithm faster.

fig.5 : Representation of ψ(x)

We could introduce an ε criteria, like we could see
in fig.5. When we find a y ∈ [kmin + 1, kmax − 1]
number of clusters for which ψ(y) is the maximum
value of ψ for [kmin + 1, kmax − 1] (so y is the elbow),
we could try to find if there is any y′ ∈ [kmin + 1, y]
such that ψ(y) ≥ ψ(y′) ≥ ψ(y) − ε. In other terms,
it could be more efficient if we use the y′ for which
ψ(y′) ∈ [ψ(y)− ε, ψ(y)] is minimal, always in order to
maker our algorithm shorter, faster and more efficient.
But what value should take ε ?

A first idea might be to use the standard deviation
of ψ. But in fact, if we use this standard deviation
σ, there can be cases where the elbow is really impor-
tant and where the difference between ψ(y) and ψ(y′)
is really too important to say that y′ is good enough
(fig.6).

fig.6 : Representation of ψ(x)

The solution that we found is to use the minimum
between a percentage of ψ(y) and the variance of ψ;
we used to set it at ε = min(10% ∗ ψ(y), σ(ψ)). It
could be sufficient to approximate the more likely to
be optimal number of clusters k.

With the Angle Comparison method, we did not
find yet any way to determine if there is an other num-
ber of clusters y′ < y whose percentage of variance ex-
plained is not so different and could be good enough.
So, although these two methods are equivalent, it could
be more interesting to use the Second Order Deriva-
tive method, because we can adapt the ”elbow” that
we found to the situation and use another one which
is good enough.
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